FORMULE DE STIRLING

DEVELOPPEMENT DE $\sum_{k=1}^{n} \frac{1}{k}$

- 1. Rappeler un équivalent de $\sum_{k=1}^{n} \frac{1}{k}$ lorsque n tend vers $+\infty$.
- 2. Pour $n \ge 1$, on pose $b_n = \sum_{k=1}^n \frac{1}{k} \ln n$, et l'on définit la suite $(u_n)_{n \in \mathbb{N}^*}$ par $u_1 = 1$ et

 $\forall n \ge 2, \ u_n = b_n - b_{n-1}.$

Prouver que la série de terme général u_n converge.

Qu'en déduit-on pour la suite $(b_n)_{n\in\mathbb{N}^*}$?

On note $\gamma = \lim_{n \to +\infty} b_n$ (γ est bien entendu la constante d'Euler).

- 3. Quel est le développement asymptotique de b_n à l'ordre 1 dans l'échelle des $(\frac{1}{n^k})_{k \in \mathbb{N}}$?
- 4. Réappliquer le même schéma à la suite $(c_n)_{n\in\mathbb{N}^*}$ définie par $\forall n\in\mathbb{N}^*,\ c_n=b_n-\gamma-\frac{1}{2n}$ et donner le développement asymptotique de b_n à l'ordre 2.

FORMULE DE STIRLING

Pour $n \ge 1$, on pose $S_n = (n + \frac{1}{2}) \ln n - n - \ln n!$.

- 1. Donner le terme général v_k d'une série dont S_n représente la somme partielle d'ordre n.
- 2. Donner le développement asymptotique de v_k à l'ordre 2. Qu'en conclut-on? On note $L = \lim_{n \to +\infty} S_n$.
- 3. Prouver que $\lim_{n\to\infty} \frac{n^{n+\frac{1}{2}}e^{-n}}{n!} = e^L$.

En déduire la formule suivante $n! \sim e^{-L} n^{n+\frac{1}{2}} e^{-n}$.

ET WALLIS POUR CONCLURE

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\pi/2} \sin^n \theta \, d\theta$.

- 1. Pour $n \geq 2$, exprimer I_n en fonction de I_{n-2} . En déduire une expression de I_n en fonction de n.
- 2. Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante.

Prouver que $\lim_{n\to\infty} \frac{I_{n+1}}{I_n} = 1$.

3. Prouver que $\lim_{p\to\infty}\sqrt{2p}\prod_{k=1}^p\frac{2k-1}{2k}=\sqrt{\frac{2}{\pi}}.$ En déduire que $e^{-L}=\sqrt{2\pi}$ (où L est le nombre défini dans le paragraphe précédent).

4. Quel est le développement asymptotique de $\frac{n!}{\sqrt{2\pi n}(\frac{n}{a})^n}$ à l'ordre 1?