Séries numériques

1. Etudier la convergence des séries de terme général :

(a)
$$u_n = \frac{n}{(n+1)^2}$$

(b)
$$u_n = \frac{1}{\sqrt{n^2 - 1}} - \frac{1}{\sqrt{n^2 + 1}}$$

(c)
$$u_n = \frac{1}{n^2 \ln n}$$

(d)
$$u_n = \frac{1}{(\ln n)^{\ln n}}$$

(e)
$$u_n = \sqrt[n]{n+1} - \sqrt[n]{n}$$

(f)
$$u_n = n^{(-1 + \frac{1}{n})}$$

(g)
$$u_n = \frac{n!}{n^n}$$

(h)
$$u_n = (1 + \sqrt{n})^{-n}$$

(i)
$$u_n = \frac{1}{\ln(n!)}$$

(j)
$$u_n = \frac{1}{\cos(n^2 + 1)}$$

(k)
$$u_n = (1 + \frac{1}{n^2})^n - 1$$

(l)
$$u_n = n^{-(\ln n)^{\lambda}}$$
 avec $\lambda > 0$

(m)
$$u_n = \operatorname{Argch}\left(e^{1/n^{\lambda}}\right) \text{ avec } \lambda > 0.$$

(n)
$$u_n = \frac{\sin \ln n}{n}$$
 (**)

(o)
$$u_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^2}$$

2. (5) (a)On considère la série de terme général
$$u_n = \frac{1}{n(\ln n)^{\alpha}}$$
 où $n \ge 2$ et $\alpha \in \mathbb{R}$.

(i) Cas $\alpha \leq 0$ En utilisant une minoration très simple de u_n , démontrer que la série diverge.

(ii) Cas $\alpha > 0$ Étudier la nature de la série.

Indication: On pourra utiliser la fonction f définie par $f(x) = \frac{1}{x(\ln x)^{\alpha}}$.

(b) Déterminer la nature de la série
$$\sum_{n\geqslant 3} \frac{\left(\mathrm{e}-\left(1+\frac{1}{n}\right)^n\right)\mathrm{e}^{\frac{1}{n}}}{\left(\ln(n^2+n)\right)^2}.$$

3. (6) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs et l un réel positif strictement inférieur à 1. (a) Démontrer que si $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=l$, alors la série $\sum u_n$ converge. **Indication**: écrire, judicieusement, la définition de $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=l$, puis majorer, pour n assez grand, u_n par le terme général d'une suite géométrique.

(b) Quelle est la nature de la série $\sum \frac{n!}{n^n}$?

4. (7) (a) Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites de nombres réels positifs. Montrer que:

$$u_n \underset{+\infty}{\sim} v_n \implies \sum u_n$$
 et $\sum v_n$ sont de même nature.

(b) Étudier la convergence de la série
$$\sum_{n\geqslant 2}\frac{(i-1)\sin\left(\frac{1}{n}\right)}{\left(\sqrt{n+3}-1\right)\ln n}. \ (i \text{ est ici le nombre complexe de carré égal à }-1)$$

5. (8) Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante positive de limite nulle.

(a) (i) Démontrer que la série $\sum (-1)^k u_k$ est convergente. **Indication**: on pourra considérer $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ avec $S_n = \sum_{k=0}^n (-1)^k u_k$.

(ii) Donner une majoration de la valeur absolue du reste de la série $\sum (-1)^k u_k$.

(b) (i) Étudier la convergence simple sur \mathbb{R} de la série de fonctions $\sum_{n\geq 1} \frac{(-1)^n e^{-nx}}{n}$.

(ii) Étudier la convergence uniforme sur $[0, +\infty[$ de la série de fonctions $\sum_{n\geqslant 1} \frac{(-1)^n e^{-nx}}{n}$.

6. Soit (u_n) une suite réelle décroissante et positive. On pose $v_n = 2^n u_{2^n}$. Déterminer la nature de $\sum v_n$ en fonction de celle de $\sum u_n$.

- 7. Soit p un entier premier. Nature de la série de terme général u_n où $u_n = \begin{cases} \frac{1}{n} & \text{si } n \text{ est une puissance entière de } p \\ \frac{1}{n} & \text{sinon} \end{cases}$
- 8. Montrer la convergence de la série de terme général $u_n = \frac{1}{n^2 + 2n\cos a \sin^2 a}$ avec $a \in \mathbb{R} \setminus \pi\mathbb{Z}$ et calculer sa

9. Montrer que les séries suivantes sont convergentes et calculer leur somme :
$$\sum_{n\geqslant 2}\frac{1}{n^2-1} \qquad \sum_{n\geqslant 2}\ln(1-\frac{1}{n^2}) \qquad \sum \frac{n}{n^4+n^2+1} \qquad \sum \frac{8}{(4n^2-1)(2n+3)}$$

- 10. Soient $\sum u_n$ et $\sum v_n$ deux séries à termes strictement positifs convergentes. Montrer que les suivantes sont aussi convergentes : $\sum \max(u_n, v_n), \sum \sqrt{u_n v_n}$ et $\sum \frac{u_n v_n}{u_n + v_n}$
- 11. Soit (u_n) une suite décroissante de réels positifs. On suppose que la série $\sum u_n$ converge. Montrer que $nu_n \to 0$.
- 12. Soient (u_n) et (v_n) deux suites de réels strictement positifs.
 - a) On suppose qu'à partir d'un certain rang $\frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$. Montrer que $u_n = O(v_n)$. b) On suppose que $\frac{u_{n+1}}{u_n} = 1 \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$ avec $\alpha > 1$.

Montrer, à l'aide d'une comparaison avec une série de Riemann, que $\sum u_n$ converge.

- 13. Soit (u_n) une suite positive. Montrer que les séries de termes généraux u_n , $\frac{u_n}{1+u_n}$, $\ln(1+u_n)$, sont de même nature.
- 14. Soit (a_n) une suite strictement positive, et $u_0 > 0$. On définit la suite (u_n) par $u_{n+1} = u_n + \frac{a_n}{u_n}$. Montrer que la suite (u_n) converge si et seulement si la série $\sum a_n$ converge.
- 15. Soit (u_n) une suite positive. Montrer $\sum \frac{1}{1+n^2u_n}$ converge $\Longrightarrow \sum u_n$ diverge
- 16. Étudier la nature de la série de terme général $u_n = \operatorname{Arctan}(n+a) \operatorname{Arctan}(n)$ avec a>0Même question avec la série de terme général $u_n = \int_0^{\pi/n} \frac{\sin^3 x}{1+x} dx$
- 17. Soit a > 0 et (u_n) la suite définie pour $n \in \mathbb{N}^*$ par $u_n = \frac{a^n n!}{n^n}$
 - (a) Étudier la convergence de la série pour $a \neq e$
 - (b) Ici a = e .montrer que la suite (u_n) est croissante à partir d'un certain rang. Conclure sur la convergence de la série.

18. Etudier la nature des séries suivantes :
$$\sum \frac{\sin n}{n^2} \sum \frac{(-1)^n \ln n}{n} \sum \frac{\cos n^2 \pi}{\ln n} \qquad \sum \frac{(-1)^n}{\ln n + (-1)^n}$$

- 19. Soit (u_n) la suite définie pour $n \ge 1$ par $u_n = \frac{(-1)^n}{\sqrt{n}}$, et (v_n) la suite définie pour $n \ge 2$ par $v_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$
 - (a) Montrer que $u_n \sim v_n$
 - (b) Montrer que la série $\sum u_n$ est convergente $(n \ge 1)$
 - (c) Montrer que la série $\sum v_n$ est divergente $(n \ge 2)$
 - (d) Expliquer
- 20. a) Justifier la convergence de la série numérique $\sum_{k\geq 1} \frac{(-1)^k}{k}$. On pose $R_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k}$
 - b) Montrer que $R_n + R_{n+1} = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k(k+1)}$
 - c) Déterminer un équivalent de R_n .
 - d) Donner la nature de la série de terme général R_n .
- 21. Soit $\alpha < 1$. Déterminer un équivalent de $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$