Compacité, connexité par arcs

- 1. Les ensembles suivants sont-ils des compacts de \mathbb{R} ?
 - (a) $A = \{x \in \mathbb{R}/1 + x^7 + x^8 > 0\}$
 - (b) $B = \{x \in \mathbb{R}/\exists y \in \mathbb{R} \text{tq } \frac{x^2}{4} \frac{y^2}{9} = 1\}$
 - (c) $D = f^{-1}([0,1])$ où f est une fonction continue de $\mathbb R$ dans $\mathbb R$ avec f(0) = 0?
 - (d) E=p(B) où B est un compact de \mathbb{R}^2 et p la projection $\begin{cases} \mathbb{R}^2 \to \mathbb{R} \\ (x,y) \to x \end{cases}$.
 - (e) $F = \{x \in \mathbb{R} / (x^2 + 1)e^{x-1}\cos(x) \in [0, 1]\}.$
- 2. Soit E un espace vectoriel normé, K un compact de E et f une isométrie de K (c'est-à-dire que f est une application de K dans K telle que $\forall (x, x') \in K^2$, ||f(x) f(x')|| = ||x x'||).
 - (a) Vérifier que f est injective.
 - (b) On suppose que $\exists x_0 \in K \setminus f(K)$.

Montrer que $d(x_0, f(K)) = r > 0$.

Considérer la suite $(x_n)_{n\in\mathbb{N}}$ de points de K telle que $\forall n\in\mathbb{N},\ x_{n+1}=f(x_n)$ et prouver que

 $\forall (p,q) \in \mathbb{N}^2, \ p \neq q \Longrightarrow ||x_p - x_q|| \ge r.$

Montrer que l'on aboutit à une contradiction. Qu'en conclut-on?

- 3. Soit $E = \mathbb{R}[X]$ normé par la norme $\left\| \sum_i a_i X^i \right\| = \sup_i |a_i|$. Montrer que $B = \{P/\|P\| \leqslant 1\}$ n'est pas compact.
- 4. Soit E un evn.
 - (a) Soit K_1 et K_2 deux compacts de E. Montrer qu'il existe $x_1 \in K_1$ et $x_2 \in K_2$ tels que $d(x_1, x_2) = \inf\{d(x, y) \mid x \in K_1, y \in K_2\} = d(K_1, K_2)$
 - (b) Soit K un compact de E et F un fermé de E. Montrer que si K et F sont disjoints, alors $d(K, F) \neq 0$.
 - (c) Montrer que ce résultat est faux dans le cas où K est seulement fermé.
- 5. E un espace de Banach, et K un compact de E. Soit f une application de E telle que $f(K) \subset K$ vérifiant : $\forall x,y \in K, \ x \neq y \Longrightarrow \|f(x) f(y)\| < \|x y\|.$

En considérant l'application $x \to d(x, f(x))$, montrer que f admet 1 et 1 seul point fixe.

- 6. Soit $E = \mathcal{C}([0, 2\pi])$ muni de la norme $\|\cdot\|_2$. Pour $n \in \mathbb{N}$, on pose $f_n(x) = \cos(nx)$.
 - (a) Calculer $||f_n f_p||_2$ pour $n, p \in \mathbb{N}$.
 - (b) En déduire que $\overline{B}(0,1)$ n'est pas compacte.
- 7. Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ continue sur I et injective. Montrer que f est strictement monotone : on pourra considérer $X = \{(x,y) \in I^2 / x < y\}$ montrer que X est connexe, puis considérer $\varphi: X \to \mathbb{R}$ définie par $\varphi(x,y) = f(x) f(y)$.
- 8. Montrer que $GL_n(\mathbb{R})$ n'est pas connexe par arcs dans $\mathcal{M}_n(\mathbb{R})$.
- 9. E un evn de dimension finie, et A et B deux parties de E connexes par arcs.

Montrer que $A \times B$ est connexe par arcs.

Montrer que $A + B = \{a + b \mid a \in a, b \in B\}$ est aussi connexe par arcs.

- 10. E un evn de dimension finie, et $f: E \to E$ contractante. Soit $a \in E$. On définit une suite $(a_n)_{n \in \mathbb{N}}$ par $\forall n \in \mathbb{N}, \ a_{n+1} = f(a_n)$.
 - (a) Montrer que la série $\sum (a_n a_{n+1})$ converge dans E.
 - (b) Montrer que f a un unique point fixe.
- 11. On note $u = \{z \in \mathbb{C}/|z| = 1\}$ et on considère $f: U \to \mathbb{R}$ une application continue. Montrer qu'il existe deux points diamétralement opposés du cercle unité U ayant même image par f.