DS n°4

mercredi 26 novembre 2014 (durée 4 heures)

Sujet plus dur pour Fiévet, Gonin, Lallier, Maxime Mazouth, Tran Ba, Viennot

Toute calculatrice interdite

Rappel: Bien traiter quelques questions rapporte des points, les bâcler toutes n'en rapporte aucun.

Exercice 1

Soit f une application de \mathbb{R} dans \mathbb{R} . On dit que f vérifie la propriété (P) si et seulement si :

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) + f(x-y) = 2f(x)f(y)$$

- 1. (a) Quelles sont les fonctions constantes qui vérifient (P)?
 - (b) Soit f une fonction vérifiant (P). Montrer que si f(0) = 0 alors f est la fonction nulle.

Dorénavant On suppose ici que f vérifie (P) et n'est pas la fonction nulle.

- 2. Calculer f(0) et étudier la parité de f.
- 3. Soit a > 0. Montrer que la donnée de f(a) suffit à définir f(na) pour tout $n \in \mathbb{Z}$ (on ne demande pas l'expression de f(na) en fonction de f(a)).
- 4. Soit a > 0. Dans cette question on suppose que $\forall x \in [0; a], f(x) > 0$. Montrer que la donnée de f(a) suffit à définir $f\left(p\frac{a}{2q}\right)$ pour tout $p \in \mathbb{Z}$ et tout $q \in \mathbb{N}$.
- 5. Soit a>0 et $x\geqslant 0$. Montrer que : $\forall q\in\mathbb{N},\ I_q=\{p\in\mathbb{N}/\ p.\frac{a}{2^q}\leqslant x\}$ possède un plus grand élément qui sera noté p_q .

On pose alors, pour tout entier q, $u_q = p_q \cdot \frac{a}{2q}$. Montrer que la suite $(u_q)_{q \in \mathbb{N}}$ converge vers x.

- 6. On suppose maintenant que f est continue sur \mathbb{R} .
 - (a) Montrer qu'il existe un réel a strictement positif tel que : $\forall x \in [0; a], \ f(x) > 0.$
 - (b) Montrer que la donnée de f(a) suffit à définir f(x) pour tout x réel.
 - (c) On suppose que f(a) = 1. Déterminer f.
 - (d) On suppose que f(a) < 1. Montrer qu'il existe un réel α tel que $\forall x \in \mathbb{R}, f(x) = \cos(\alpha x)$.

Exercice 2

Soit K une partie compacte de l'espace vectoriel normé E de dimension finie et soit f une application de K dans K telle que :

$$\forall (x,y) \in K^2, \ x \neq y \Longrightarrow ||f(x) - f(y)|| < ||x - y||$$

- 1. (a) Montrer qu'il existe un c dans K tel que $||c f(c)|| = \inf\{||x f(x)|| / x \in K\}$
 - (b) Montrer que c est l'unique point fixe de f dans K (on pourra considérer ||b f(b)|| avec b = f(c))
- 2. Pour $a \in K$ on construit la suite $(a_n)_{n \in \mathbb{N}}$ définie par :

$$a_0 = a$$
 et $\forall n \in \mathbb{N}, \ a_{n+1} = f(a_n)$

le but de la question est de montrer que cette suite converge vers c.

- (a) Posons $u_n = ||c a_n||$. S'il existe $n_0 \in \mathbb{N}$ tel que $a_{n_0} = c$, conclure.
- (b) Sinon, étudier les variations de la suite (u_n) et en déduire qu'elle converge vers ℓ .
- (c) En supposant $\ell > 0$, et en utilisant le fait que la suite (a_n) est une suite d'un compact, aboutir à une absurdité.
- (d) Conclure

Exercice 3

Soit I un intervalle de \mathbb{R} et f une fonction de I dans \mathbb{R} de classe \mathcal{C}^{∞} . On dira que f est absolument monotone (en abrégé AM) sur I si et seulement si

$$\forall n \in \mathbb{N}, \forall x \in I, \ f^{(n)}(x) \geqslant 0$$

- 1. (a) Déterminer parmi les fonctions suivantes celles qui sont absolument monotones : $x \to exp(x)$ sur \mathbb{R} , $x \to cosh(x)$ sur \mathbb{R} (on note cosh la fonction cosinus hyperbolique), $x \to -\frac{1}{x}$ sur $]-\infty,0[$
 - (b) Soient f et g deux fonctions AM définies sur I. Montrer que f + g et fg sont AM sur I.
 - (c) soit f est une fonction AM sur I. On considère la fonction $g = e^f$ Calculer g' et en déduire pour tout entier $n \ge 1$, une expression de $g^{(n)}$ faisant intervenir les dérivées successives de g et de f. Démontrer que g est absolument monotone sur I.
 - (d) Montrer que la fonction \tan est AM sur $[0,\frac{\pi}{2}[.$
- 2. (a) On considère la fonction f définie sur]-1,+1[par $f(x)=\frac{1}{\sqrt{1-x^2}}$. Montrer que f est infiniment dérivable et que $f^{(n)}$ s'écrit sous la forme $f^{(n)}(x)=\frac{P_n(x)}{(1-x^2)^{n+\frac{1}{2}}}$ avec P_n polynôme à coefficients réels.
 - (b) Étudier la parité de P_n .
 - (c) Vérifier que pour tout $x \in]-1,+1[, (1-x^2)f'(x)-xf(x)=0$
 - (d) Montrer que pour tout $n \in \mathbb{N} \{0\}$, $P_{n+1} = (2n+1)XP_n + n^2(1-X^2)P_{n-1}$ et $P'_n = n^2P_{n-1}$.
 - (e) Montrer que Arcsin est AM sur]0,1[.
- 3. Dans cette question on suppose que f absolument monotone sur a, b avec a et b réels.
 - (a) Montrer qu'il existe $\lambda \in \mathbb{R}$ tel que $\lambda = \lim_{a^+} f$
 - (b) On prolonge f en posant $f(a) = \lambda$. Montrer que f est dérivable à droite en a et que f' est continue à droite en a.
 - (c) Montrer que f ainsi prolongée est une fonction absolument monotone sur [a, b].
 - (d) Le même phénomène se produit-il en b?
- 4. On suppose ici que $-\infty < a < 0 < b < +\infty$. Soit f absolument monotone sur]a,b[. On pose $S_n(x) = \sum_{k=0}^n \frac{x^k}{k!} f^{(k)}(0)$ et $R_n(x) = f(x) S_n(x)$.
 - (a) Rappeler la formule de Taylor avec reste intégrale (sans oublier ses hypothèses).
 - (b) Montrer que pour tout $x \ge 0$, $R_n(x) = \frac{x^{n+1}}{n!} \int_0^1 (1-u)^n f^{(n+1)}(xu) du$.
 - (c) Montrer que la fonction $x \to \frac{R_n(x)}{x^n}$ est croissante sur]0, b[.
 - (d) Justifier que $\forall x \geqslant 0$, la série $\sum \frac{x^k}{k!} f^{(k)}(0)$ converge vers f(x) (on pourra prendre 0 < x < y < b et montrer que $0 \leqslant R_n(x) \leqslant \left(\frac{x}{y}\right)^n f(y)$)
 - (e) Montrer que pour tout $c \in]a,b[$, la série $\sum \frac{(x-c)^n}{n!} f^{(n)}(c)$ converge vers f(x) pour $x \geqslant c$.
 - (f) En déduire que s'il existe $x_0 \in]a,b[$ tel que $f(x_0)=0$ alors $\forall x>a,f(x)=0.$