DM n°

à rendre mercredi 10 décembre 2014

TRANSCENDANCE

Les deux parties qui suivent traitent de la transcendance de différents nombres réels, mais sont totalement indépendantes. * Un nombre réel x_0 est dit transcendant lorsqu'il n'existe aucun polynôme P de $\mathbb{Q}[X]\setminus\{0\}$ tel que $P(x_0)=0$. x_0 est dit algébrique dans le cas contraire.

* Prouver que x_0 est algébrique si et seulement si $\exists P \in \mathbb{Z}[X] \backslash \{0\}$ / $P(x_0) = 0$.

Partie I: transcendance du nombre e (Hermite, 1873)

- 1. Soit $\alpha \in \mathbb{R}$ et $P \in \mathbb{R}[X]$. On pose $I(P) = \int_0^1 \alpha e^{-\alpha x} P(\alpha x) dx$. Prouver que $I(P) = [-e^{-\alpha x} Q(\alpha x)]_0^1$, où $Q = P + P' + P'' + \dots + P^{(k)}$, avec $k = \deg(P)$; prouver ensuite que $e^{\alpha}Q(0) = Q(\alpha) + R(\alpha)$, où $R(\alpha) = \alpha e^{\alpha} \int_0^1 e^{-\alpha x} P(\alpha x) dx$.
- 2. On suppose e algébrique.

comme au 1.

- (a) Prouver qu'il existe une famille $(a_0, a_1, ..., a_n) \in \mathbb{Z}^{n+1}$, avec $a_0 \neq 0$ et $a_n \neq 0$ telle que $\sum_{j=0}^n a_j e^j = 0$ et $n \geq 1$. En déduire : $\forall P \in \mathbb{R}[X], \ a_0 Q(0) + \sum_{j=1}^n a_j Q(j) = -\sum_{j=1}^n a_j R(j)$ (*), où Q et R sont définis à partir de P
- (b) On choisit le polynôme P défini précisément par $P(x) = \frac{x^{p-1}}{(p-1)!} \prod_{i=1}^{n} (x-i)^p$, où p est un nombre premier fixé.

Montrer successivement que

- i. $\forall r \in \mathbb{N}, \ r \geq p \Longrightarrow P^{(r)}$ a tous ses coefficients entiers et divisibles par p (on utilisera une expression développée de P, à savoir $P = \sum c_k x^k$).
- ii. $\forall j \in [1, n], \ Q(j)$ est un multiple de p.
- iii. Le membre de gauche de (*) est égal à $\xi_p = a_0(-1)^{np}(n!)^p + \lambda p$, avec $\lambda \in \mathbb{Z}$.
- (c) Montrer l'existence d'un entier premier p_0 tel que $\forall p$ premier, $p \geqslant p_0 \Longrightarrow \xi_p \in \mathbb{Z}^*$. On opère donc un tel choix dorénavant.
- $\text{(d) D\'emontrer que } \forall j \in [\![1,n]\!], \ |R(j)| \leqslant ne^n \frac{n^{p-1}}{(p-1)!} (n^p)^n, \ \text{puis que } |R(j)| \leqslant e^n.n^{n+1}.\frac{(n^{n+1})^{p-1}}{(p-1)!} \ .$
- (e) Prouver que l'on peut choisir p de sorte que $(\max_{1 \le j \le n} |a_j|).ne^n.n^{n+1}.\frac{(n^{n+1})^{p-1}}{(p-1)!} < 1$
- (f) Montrer, à l'aide d'une série bien choisie, que lorsque p premier tend vers $+\infty$ alors R(j) tend vers 0 (n'oubliez pas que R dépend de p qui dépend de p). Conclure (ne pas omettre ici que n est fixé).

Partie II: les nombres de Liouville: Facultatif

- 1. Soit $\xi \in \mathbb{C}$.
 - (a) Montrer que $\{H \in \mathbb{Q}[X], \ H(\xi) = 0\}$ est un idéal de $\mathbb{Q}[X]$ Montrer que si cet idéal est non réduit au polynôme nul il existe un unique polynôme unitaire $M \in \mathbb{Q}[X]$ tel que $\{H \in \mathbb{Q}[X], \ H(\xi) = 0\} = M\mathbb{Q}[X]$

Soit $n \in \mathbb{N}$. ξ est dit algébrique de degré n si $M \neq 0$ et si deg(M) = n.

- (b) Soit $\xi \in \mathbb{C}$. montrer que ξ est algébrique de degré 1 si et seulement si $\xi \in \mathbb{Q}$.
- 2. On veut démontrer le théorème de Liouville, dont l'énoncé est le suivant : soit ξ un nombre réel algébrique de degré n sur $\mathbb Q$; alors

 $\forall \delta > 0, \ \forall A > 0, \ l$ 'inéquation (1) $|\xi - \frac{p}{q}| < \frac{A}{q^{n+\delta}}$ n'a qu'un nombre fini de solutions en rationnels $\frac{p}{q}$ (on suppose $q \in \mathbb{N}^*$ dans l'écriture $\frac{p}{q}$ d'un nombre rationnel quelconque).

- (a) Démontrer le théorème de Liouville lorsque $\xi \in \mathbb{Q}$ (on prouvera que si $\frac{p}{q}$ vérifie (1), alors q ne prend qu'un nombre fini de valeurs possibles, puis que p ne prend qu'un nombre fini de valeurs possibles).
- (b) Pour ξ algébrique de degré $n\geqslant 2$ (donc irrationnel), introduire un polynôme P de $\mathbb{Q}[X]$ de degré n dont ξ est racine, prouver l'existence d'un réel $\alpha>0$ tel que P n'a aucune racine rationnelle dans $[\xi-\alpha,\xi+\alpha]$, et pour $\frac{p}{q}\in]\xi-\alpha,\xi+\alpha[$, démontrer par le théorème des accroissements finis que $|\frac{p}{q}-\xi|\geqslant \frac{1}{Mq^n}$, où $M=\sup_{y\in [\xi-\alpha,\xi+\alpha]}|P'(y)|$. Conclure.
- 3. Soit ξ un nombre de la forme $\xi = \sum_{n=1}^{\infty} \frac{a_n}{10^{n!}}$, où $\forall n \in \mathbb{N}^*, \ a_n \in [1, 9]$. Un tel nombre est appelé nombre de Liouville.
 - (a) Justifier la convergence de la série définissant le nombre ξ . Pour $r \in \mathbb{N}^*$, on note x_r la somme partielle d'ordre r de cette série.
 - (b) Montrer que la famille $(x_r)_{r\in\mathbb{N}^*}$ est formée de rationnels tous distincts.
 - (c) Soit $r \in \mathbb{N}$. Démontrer que $0 < \xi x_r < \frac{10}{10^{(r+1)!}}$.
 - (d) En déduire que le nombre ξ est transcendant.
 - (e) Prouver enfin qu'à deux suites $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ distinctes de $[1,9]^{\mathbb{N}^*}$ correspondent deux nombres transcendants distincts ξ et ζ $\left(\xi = \sum_{n=1}^{\infty} \frac{a_n}{10^{n!}}, \ \zeta = \sum_{n=1}^{\infty} \frac{b_n}{10^{n!}}\right)$ (on pourra introduire $s = \inf\{n \in \mathbb{N}^*, \ a_n \neq b_n\}$).

On a ainsi exhibé une infinité non dénombrable de nombres réels transcendants.

Exercice: une série de fonctions

Soit $\alpha > 0$. Pour $n \in \mathbb{N}^*$, on considère l'application u_n de $[0, +\infty[$ vers \mathbb{R} définie par $u_n(x) = \frac{x}{n^{\alpha}(1 + nx^2)}$.

- 1. Etude des modes de convergence de la série $\sum u_n$.
 - (a) Montrer que la série $\sum u_n$ converge simplement que $[0, +\infty[$.
 - (b) étudier la convergence normale de $\sum u_n$ sur $[0, +\infty[$.
 - (c) étudier la convergence normale de $\sum u_n$ sur tout compact de \mathbb{R}_+^* .
 - (d) On suppose dans cette question $\alpha \leq \frac{1}{2}$. Pour $x \in \mathbb{R}_+$, on pose $R_n(x) = \sum_{k=n+1}^{+\infty} u_k(x)$.

Etablir l'inégalité
$$R_n(x) \geqslant \sum_{k=n+1}^{2n} \frac{x}{\sqrt{2n}(1+kx^2)}$$
.

La série $\sum u_n$ converge-t-elle uniformément sur [0, a] où a est un réel strictement positif fixé ?

2. On note S la fonction définie sur \mathbb{R}_+ par $S = \sum_{n=1}^{\infty} u_n$.

Etudier la continuité de S sur \mathbb{R}_+^* .

Pour $\alpha > \frac{1}{2}$ étudier la continuité de S en 0.