DS n°6

mercredi 16 janvier 2019 (durée 4 heures)

Sujet normal

Les calculatrices sont interdites

I. EXERCICE I

Soit $I =]0, +\infty[$ et on définit pour $n \in \mathbb{N}^*$ et pour $x \in I$, $f_n(x) = e^{-nx} - 2e^{-2nx}$

I.1. Justifier que pour tout $n \in \mathbb{N}^*$ les fonctions f_n sont intégrables sur I et calculer $\int_0^{+\infty} f_n(x) dx$.

Que vaut alors la somme $\sum_{n=1}^{+\infty} \left(\int_0^{+\infty} f_n(x) dx \right) ?$

I.2. Démontrer que la série de fonctions $\sum_{n\geqslant 1} f_n$ converge simplement sur I. Déterminer sa fonction

somme et démontrer que S est intégrable sur I. Que vaut alors $\int_0^{+\infty} \left(\sum_{n=1}^{+\infty} f_n(x)\right) dx$?

I.3. (Ne pas traiter) Donner sans aucun calcul la nature de la série $\sum_{n\geqslant 1} \left(\int_0^{+\infty} |f_n(x)| dx \right)$

II. EXERCICE II

II.1.

II.1.a Soit $n \in \mathbb{N}$. Justifier que $I_n = \int_0^{+\infty} t^n e^{-t} dt$ converge.

II.1.b Déterminer une relation de récurrence liant I_n et I_{n+1} .

II.1.c En déduire la valeur de I_n pour tout n.

II.2. On pose ici $E = \mathbb{R}_n[X]$. Pour P et Q dans E, on note P, Q > 1 intégrale $\int_0^{+\infty} P(t)Q(t)e^{-t}dt$.

Montrer que l'application $\varphi: \begin{cases} E \times E & \to \mathbb{R} \\ (P,Q) & \to < P,Q > \end{cases}$ est un produit scalaire.

II.3. Soit f l'application définie sur E par f(P) = XP''(X) + (1-X)P'(X). Démontrer que $f \in S(E)$ (on pourra s'intéresser à la dérivée de $t \to tP'(t)e^{-t}$).

II.4. Montrer que f est diagonalisable en base orthonormée, et donner dans cette base orthonormée la matrice de f (on pourra commencer par chercher l'image de la base canonique par f).

1

III. PROBLÈME

Notations et rappels

Soit n un entier supérieur ou égal à 1. On désigne par $\operatorname{diag}(\alpha_1, \dots, \alpha_n)$ la matrice diagonale de $\mathcal{M}_n(\mathbb{R})$ dont les coefficients diagonaux sont les réels $\alpha_1, \dots, \alpha_n$ dans cet ordre. Si $M \in \mathcal{M}_n(\mathbb{R})$, on note ${}^t\!M$ sa transposée.

On munit l'espace vectoriel $E = \mathbb{R}^n$ du produit scalaire canonique noté $\langle \, | \, \rangle$ et de la norme euclidienne $\|.\|$ associée, on note $\mathcal{S}(E)$ le sous-espace des endomorphismes symétriques de E, c'est-à-dire l'ensemble des endomorphismes s de E vérifiant : $\forall (x,y) \in E^2, \langle s(x)|y \rangle = \langle x|s(y) \rangle$.

Un endomorphisme symétrique s de E est dit symétrique positif (respectivement symétrique défini positif) si : $\forall x \in E, \langle s(x)|x \rangle \geq 0$ (respectivement $\forall x \in E \setminus \{0\}, \langle s(x)|x \rangle > 0$).

Une matrice symétrique S de $\mathcal{M}_n(\mathbb{R})$ est dite symétrique positive (resp. symétrique définie positive) si : $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ ^tXSX \geq 0$ (respectivement $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \ ^tXSX > 0$).

On note $\mathcal{S}_n^+(\mathbb{R})$ (respectivement $\mathcal{S}_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques positives (respectivement symétriques définies positives) de $\mathcal{M}_n(\mathbb{R})$.

On rappelle qu'un endomorphisme s de E est symétrique (respectivement symétrique positif, symétrique défini positif) si, et seulement si, sa matrice dans toute base orthonormée de E est symétrique (respectivement symétrique positive, symétrique définie positive).

On admet que, pour tous réels positifs a_1, \dots, a_n ,

$$\left(\prod_{i=1}^{n} a_{i}\right)^{\frac{1}{n}} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i} \quad \text{(inégalité arithmético-géométrique)}.$$

Objectif du problème

On se donne une matrice S de $\mathcal{S}_n^+(\mathbb{R})$ (ou $\mathcal{S}_n^{++}(\mathbb{R})$) et on étudie le maximum (ou minimum) de la forme linéaire $A \mapsto \operatorname{Tr}(AS)$ sur des ensembles de matrices.)

Questions préliminaires

III.1.

III.1.a Enoncer(sans démonstration) le théorème de réduction des endomorphismes symétriques de l'espace euclidien E (aussi appelé théorème spectral) et sa version relative aux matrices symétriques réelles.

III.1.b Toute matrice symétrique à coefficients complexes est-elle nécessairement diagonalisable? On pourra par exemple considerer la matrice de $\mathcal{M}_2(\mathbb{C})$:

$$S = \left(\begin{array}{cc} i & 1\\ 1 & -i \end{array}\right)$$

III.2. Soit $s \in \mathcal{S}(E)$, de valeurs propres (réelles) $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant :

$$\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$$
.

Soit $\beta = (\varepsilon_1, \dots, \varepsilon_n)$ une base orthonormée de E telle que, pour tout $\in \{1, \dots, n\}$, ε_i est un vecteur propre associée à la valeur propres α_i . Pour tout vecteur $x \in E$, on pose :

$$R_s(x) = \langle s(x)|x\rangle.$$

III.2.a Exprimer $R_s(x)$ à l'aide des λ_i et des coordonnées de x dans la base β .

III.2.b En déduire l'inclusion : $R_s(S(0,1)) \subset [\lambda_1, \lambda_n]$ où S(0,1) désigne la sphère unité de E. III.3.

III.3.a On suppose dans cette question que s est symétrique positif (respectivement symétrique défini positif). Démontrer que les valeurs propres de s sont toutes positives (respectivement strictement positives).

III.3.b Soit $S = (s_{i,j}) \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant :

$$0 \le \lambda_1 \le \lambda_2 \cdots \ldots \le \lambda_n$$
.

On note s l'endomorphisme de E représenté par S dans la base canonique $\mathcal{B} = (e_1, \dots, e_n)$. Exprimer le terme général $s_{i,j}$ de S comme un produit scalaire et démontrer que :

$$\forall i \in \{1, \dots, n\} \quad \lambda_1 \leq s_{i,i} \leq \lambda_n.$$

Un maximum sur $\mathcal{O}_n(\mathbb{R})$

On note I_n la matrice unité de $\mathcal{M}_n(\mathbb{R})$ et $\mathcal{O}_n(\mathbb{R})$ le groupe des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.

III.4. Démontrer que l'application $M \mapsto {}^t\!MM - I_n$ est continue dans $\mathcal{M}_n(\mathbb{R})$.

III.5. En considérant les colonnes de A justifier que, si $A=(a_{i,j})$ est une matrice orthogonale, alors :

$$\forall (i,j) \in \{1, \dots, n\}^2 \ |a_{i,j}| \le 1.$$

III.6. En déduire que le groupe orthogonal $\mathcal{O}_n(\mathbb{R})$ est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.

III.7. Soit $S \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres (positives) $\lambda_1, \dots, \lambda_n$. On pose $\Delta = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. Si A est une matrice orthogonale, on note T(A) le nombre réel $T(A) = \operatorname{Tr}(AS)$.

III.7.a Soit $A \in \mathcal{O}_n(\mathbb{R})$. Démontrer qu'il existe une matrice orthogonale B telle que :

$$T(A) = \text{Tr}(B\Delta).$$

III.7.b Démontrer que l'application T de $\mathcal{O}_n(\mathbb{R})$ dans \mathbb{R} admet un maximum sur $\mathcal{O}_n(\mathbb{R})$, que l'on notera t.

III.7.c Démontrer que, pour toute matrice orthogonale A de $\mathcal{O}_n(\mathbb{R})$, $T(A) \leq \text{Tr}(S)$, puis déterminer le réel t.

Inégalité d'Hadamard

Soit $S = (s_{i,j}) \in \mathcal{S}_n^+(\mathbb{R})$, de valeurs propres (réelles positives) $\lambda_1, \dots, \lambda_n$ rangées dans l'ordre croissant :

$$0 < \lambda_1 < \lambda_2 < \dots < \lambda_n$$
.

III.8. Démontrer l'inégalité valable pour tout $S \in \mathcal{S}_n^+(\mathbb{R})$:

$$\det(S) \le \left(\frac{1}{n} \operatorname{Tr}(S)\right)^n \quad (*).$$

III.9. Soit $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$, $D = \operatorname{diag}(\alpha_1, \dots, \alpha_n)$ et $S_\alpha = {}^t\!DSD$. Démontrer que $S_\alpha \in \mathcal{S}_n^+(\mathbb{R})$ et calculer $\operatorname{Tr}(S_\alpha)$.

III.10. Dans cette question, on suppose que les coefficients diagonaux $s_{i,i}$ de S sont strictement positifs et, pour $1 \le i \le n$, on pose $\alpha_i = \frac{1}{\sqrt{s_{i,i}}}$. En utilisant (*), démontrer que :

$$\det(S) \le \prod_{i=1}^{n} s_{i,i}.$$

III.11. Pour tout réel $\varepsilon > 0$, on pose $S_{\varepsilon} = S + \varepsilon I_n$. Démontrer que $\det(S_{\varepsilon}) \leq \prod_{i=1}^n (S_{i,i} + \varepsilon)$, puis conclure que :

$$\prod_{i=1}^{n} \lambda_{i} \leq \prod_{i=1}^{n} s_{i,i} \quad \text{(inégalité d'Hadamard)}$$

Application de l'inégalité d'Hadamard : détermination d'un minimum

Soit $S \in \mathcal{S}_n^{++}(\mathbb{R})$, de valeurs propres $0 < \lambda_1 \leq \cdots \leq \lambda_n$, et $\Delta = \operatorname{diag}(\lambda_1, \cdots, \lambda_n)$. Soit $\Omega \in \mathcal{O}_n(\mathbb{R})$ tel que $S = \Omega \Delta^t \Omega$. On désigne par \mathcal{U} l'ensemble des matrices de $\mathcal{S}_n^{++}(\mathbb{R})$ de déterminant égal à 1.

III.12. Démontrer que, pour tout $A \in \mathcal{U}$, la matrice $B = \Omega A \Omega$ est une matrice de \mathcal{U} vérifiant :

$$\operatorname{Tr}(AS) = \operatorname{Tr}(B\Delta)$$

III.13. Démontrer que $\{\operatorname{Tr}(AS)/A \in \mathcal{U}\} = \{\operatorname{Tr}(B\Delta)/B \in \mathcal{U}\}$, puis que ces ensembles admettent une borne inférieur que l'on notera m.

III.14. Démontrer que, si $B = (b_{i,j}) \in \mathcal{U} : \text{Tr}(B\Delta) \ge n(\lambda_1 \cdots \lambda_n)^{\frac{1}{n}} (b_{1,1} \cdots b_{n,n})^{\frac{1}{n}}$.

III.15. En déduire que, pour $B = (b_{i,j}) \in \mathcal{U}$, $\operatorname{Tr}(B\Delta) \geq n(\det(S))^{\frac{1}{n}}$.

III.16. Pour tout entier k tel que $1 \le k \le n$, on pose $\mu_k = \frac{1}{\lambda_k} (\det(S))^{\frac{1}{n}}$ et $D = \operatorname{diag}(\mu_1, \dots, \mu_n)$. Déterminer le réel m.