DM n°12

à rendre mercredi 3 avril 2019

On étudie dans ce problème quelques propriétés des fonctions de Bessel, obtenues à partir de l'équation différentielle :

$$(E_{\alpha})$$
 $x^2y'' + xy' + (x^2 - \alpha^2)y = 0$

où α est un paramètre réel positif.

Partie I

- 1. Déterminer les solutions sur \mathbb{R} de l'équation différentielle : z'' + z = 0.
- 2. Pour deux réels A et B, déterminer un développement limité à l'ordre 1 en 0 de la fonction $x \mapsto A \cos x + B \sin x$.
- 3. Trouver une condition nécessaire et suffisante sur A et B pour que la fonction

$$x \mapsto \frac{A\cos x + B\sin x}{\sqrt{x}}$$

admette une limite finie en 0^+ . Cette condition étant satisfaite, donner un équivalent de $\frac{A\cos x + B\sin x}{\sqrt{x}}$ lorsque x tend vers 0^+ .

Partie II

On considère dans cette partie l'équation différentielle :

$$(E_{\frac{1}{2}})$$
 $x^2y'' + xy' + \left(x^2 - \frac{1}{4}\right)y = 0$

dont on cherche les solutions sur l'intervalle $[0; +\infty[$.

- 4. Que peut-on dire de l'ensemble des solutions sur]0 ; $+\infty$ [de l'équation différentielle $(E_{\frac{1}{2}})$?
- 5. Soit y une fonction de classe \mathscr{C}^2 sur $]0\,;+\infty[$ et soit z la fonction définie par :

$$z: \left\{ \begin{array}{ccc}]0; +\infty[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^{\frac{1}{2}}y(x) \end{array} \right.$$

Démontrer que y est solution de $(E_{\frac{1}{2}})$ si et seulement si z est solution d'une équation différentielle linéaire du second ordre à coefficients constants.

- 6. Résoudre l'équation différentielle $(E_{\frac{1}{2}})$ sur l'intervalle $]0;+\infty[$.
- 7. Démontrer que l'ensemble des solutions de $(E_{\frac{1}{2}})$ sur $]0;+\infty[$ qui possèdent une limite finie en 0 est un espace vectoriel de dimension 1.
- 8. Démontrer qu'il existe une unique solution de $(E_{\frac{1}{2}})$ sur $]0;+\infty[$, notée $f_{\frac{1}{2}};$ telle que :

$$f_{\frac{1}{2}}(x) \underset{x \to 0^+}{\sim} \sqrt{\frac{2x}{\pi}}$$

1

Partie III

Dans cette partie, α est un réel fixé, $\alpha \geq 0$, et on considère les équations différentielles :

$$(E_{\alpha}) \qquad x^2 y'' + x y' + (x^2 - \alpha^2) y = 0$$

$$(E'_{\alpha}) \qquad x z'' + (2\alpha + 1) z' + x z = 0.$$

9. On rappelle la définition de la fonction Γ :

$$\Gamma: \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \int_0^{+\infty} t^{x-1} \mathrm{e}^{-t} \, \mathrm{d}t \end{array} \right.$$

Démontrer que $\Gamma(1) = 1$ et, pour tout x > 0, $\Gamma(x+1) = x\Gamma(x)$.

- 10. On considère une série entière $\sum_{n\geq 0} a_n x^n$ dont le rayon de convergence est noté R et dont la somme sur l'intervalle]-R; R[est notée S. On suppose dans cette question que R est strictement positif.
 - (a) Rappeler une définition du rayon de convergence de la série entière $\sum_{n\geq 0} a_n x^n$.
 - (b) On suppose dans cette question que S est solution de l'équation différentielle (E'_{α}) sur]-R; R[. Démontrer que $a_1=0$ et que :

$$\forall n \in \mathbb{N}^*, (n+1)(n+1+2\alpha)a_{n+1}+a_{n-1}=0.$$

- 11. On suppose ici que la suite $(a_n)_{n\geq 0}$ satisfait les deux conditions obtenues à la question précédente.
 - (a) Démontrer que $a_{2n+1} = 0$ pour tout n.
 - (b) Déterminer le rayon de convergence R de la série entière $\sum_{n>0} a_n x^n$.
 - (c) Démontrer que, pour tout entier $n \in \mathbb{N}$, on a :

$$a_{2n} = \frac{(-1)^n \Gamma(\alpha+1)}{n! 2^{2n} \Gamma(n+\alpha+1)} a_0$$
.

- 12. Préciser la nature de l'ensemble des solutions sur $]0; +\infty[$ de l'équation différentielle (E_{α}) .
- 13. Soit $y:]0; +\infty[\to \mathbb{R}$ une fonction de classe \mathscr{C}^2 . On définit la fonction z:

$$z: \left\{ \begin{array}{ccc}]0\; ; +\infty[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^{-\alpha}y(x) \end{array} \right.$$

Démontrer que y est solution de (E_{α}) sur $]0;+\infty[$ si et seulement si z est solution de (E'_{α}) sur $]0;+\infty[$.

14. En déduire que la fonction f_{α} définie sur $]0; +\infty[$ en posant :

$$\forall x > 0, \ f_{\alpha}(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n! 2^{2n+\alpha} \Gamma(n+\alpha+1)} x^{2n+\alpha}$$

est solution de (E_{α}) sur $]0; +\infty[$.

15. Déterminer un équivalent de $f_{\alpha}(x)$ lorsque x tend vers 0.

Dans la suite du problème, on considère le cas particulier où $\alpha=p$ est un entier naturel et f_p est la solution de (E_p) définie par :

$$\forall x \in \mathbb{R}, \ f_p(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+p)!} \left(\frac{x}{2}\right)^{2n+p}$$

2

(insistons sur le fait que cette fonction f_p est définie sur $\mathbb R$).

16. Pour tout entier $p \ge 1$ et tout réel x, expliciter $f_{p-1}(x) - f_{p+1}(x)$ comme somme d'une série entière.

En déduire l'existence d'une constante k que l'on précisera telle que

$$\forall x \in \mathbb{R}, \ f_{p-1}(x) - f_{p+1}(x) = k f'_p(x).$$

Partie IV

Dans cette partie, $p \in \mathbb{N}$ est un entier naturel fixé et on considère la fonction f_p définie dans la partie précédente. On définit également une fonction g_p sur \mathbb{R} en posant :

$$\forall x \in \mathbb{R}, \ g_p(x) = \frac{1}{\pi} \int_0^{\pi} \cos(pt - x \sin t) \, dt.$$

- 17. Démontrer que g_p est de classe \mathscr{C}^2 sur \mathbb{R} et expliciter (sous forme d'une intégrale) les fonctions g_p' et g_p'' .
- 18. En intégrant par parties $g_p'(x)$, vérifier que g_p est solution de l'équation différentielle (E_p) .
- 19. Pour tout entier naturel $n \in \mathbb{N}$, on note $w_n = \int_0^{\pi} \sin^n t \, dt$.
 - (a) Démontrer que pour tout $n \ge 2$, $nw_n = (n-1)w_{n-2}$.
 - (b) Donner l'expression de w_{2n} en fonction de n.
- 20. Établir l'égalité:

$$\forall x \in \mathbb{R}, \ g_1(x) = \frac{1}{\pi} \int_0^{\pi} \sin t . \sin(x \sin t) dt,$$

puis démontrer que g_0 et g_1 sont développables en série entière sur $\mathbb R$.

- 21. Démontrer les égalités de fonctions $g_0=f_0$ et $g_1=f_1$.
- 22. Démontrer que pour tout entier $p \geq 1$ et tout réel $x \in \mathbb{R}$:

$$g_{p-1}(x) - g_{p+1}(x) = 2g'_p(x)$$
.

23. Démontrer que pour tout entier $p \in \mathbb{N}$ les fonctions f_p et g_p sont égales.