

Toute calculatrice interdite

Fonction d'une variable complexe définie par une intégrale

Avertissement

Les trois parties sont indépendantes. Le résultat final de la Partie I fournit une valeur particulière de la fonction F étudiée dans les parties II et III.

Partie I - Sommes d'une série

I.A - On considère les sommes :
$$A = \sum_{k=1}^{+\infty} \frac{1}{k^2}$$
 et $B = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1}$

Jusitifer qu'elles convergent.

On donne leurs sommes, qu'on pourra utiliser sans démonstration : $A = \frac{\pi^2}{6}$ et $B = \frac{\pi}{4}$

Calculer
$$S_1 = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2}$$
.

I.B -

I.B.1) Préciser le domaine d'existence dans \mathbb{R} de $L(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{n+1}$.

Exprimer L(x) à l'aide de fonctions usuelles.

I.B.2) Calculer l'intégrale
$$I = \int_0^1 \frac{\ln{(1-x^2)}}{x^2} dx$$
.

I.B.3) En déduire la valeur de
$$S_2 = \sum_{n=0}^{\infty} \frac{1}{(2n+1)(n+1)}$$
.

I.B.4) Exprimer
$$S_3 = \sum_{n=1}^{\infty} \frac{1}{n\left(n-\frac{1}{2}\right)^2}$$
 en fonction de S_1 et S_2 . En déduire la valeur de S_3 .

Dans toute la suite, on utilise les notations qui suivent :

- Pour tout réel t > 0, ln t désigne le logarithme népérien de t.
- Si t est un réel strictement positif et si z=x+iy, où $(x,y)\in\mathbb{R}^2$, est un complexe, on note $t^z = \exp\left(z\ln t\right).$

• On définit la fonction $p:]0,1[\to \mathbb{R}$ par

$$p(t) = \frac{\ln t \cdot \ln (1-t)}{t}$$

 $p(t) = \frac{\ln t \cdot \ln (1-t)}{t}.$ Pour tout z complexe tel que la fonction $t \mapsto t^{-z}p(t)$ est intégrable sur]0,1[, on pose

$$F(z) = \int_0^1 t^{-z} p(t) dt.$$

On définit ainsi une fonction F de la variable complexe z; on notera encore, par extension, F la fonction de deux variables réelles associée.

1

Ainsi, pour $(x, y) \in \mathbb{R}^2$, F(x, y) = F(x + iy).

Le but du problème est d'étudier la fonction F.

Partie II - Étude locale de F

- II.A Montrer que le domaine de définition de F est $\Omega = \{z \mid z \in \mathbb{C}, \Re z < 1\}$. On pose $I = \Omega \cap \mathbb{R} =]-\infty, 1[$.
- II.B Déterminer la limite de F(z) quand la partie réelle de z tend vers $-\infty$.

II.C -

- II.C.1) Déterminer la limite de F(x) quand le réel $x \in I$ tend vers 1.
- II.C.2) Pour tout $x \in I$, on pose $G(x) = \int_0^1 t^{-x} |\ln t| dt$. Calculer G(x).
- II.C.3) Prouver que la limite de F(x) G(x), quand $x \in I$ tend vers 1, existe et est finie.
- II.C.4) En déduire la limite de $\frac{F(x)}{G(x)}$ quand $x \in I$ tend vers 1.
- II.D Montrer que la restriction de F à I est C^{∞} . Pour tout $x \in I$, donner l'expression de la dérivée k-ième $F^{(k)}(x)$ sous forme intégrale.

II.E -

- II.E.1) Établir que F est de classe C^{∞} sur Ω . Si k et ℓ sont deux entiers $\geqslant 0$ et si $z \in \Omega$, exprimer la dérivée partielle $\frac{\partial^{k+\ell} F}{\partial x^k \partial y^{\ell}}(z)$ sous la forme d'une intégrale.
- II.E.2) Comparer $\frac{\partial F}{\partial x}$ et $\frac{\partial F}{\partial y}$.
- II.E.3) Évaluer $\frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2}$.

II.F -

II.F.1) Soient $z \in \Omega$ et (z_n) une suite de points de Ω , distincts de z, qui converge vers z. Prouver l'existence de $\lim_{n \to \infty} \frac{F(z_n) - F(z)}{z_n - z}$.

On pourra utiliser la continuité de $\frac{\partial F}{\partial x}$ et de $\frac{\partial F}{\partial y}$, ainsi que le résultat de II.E.2.

On observera que cette limite ne dépend que de z, et non de la suite (z_n) .

Par la suite, on note DF(z) cette limite.

On définit ainsi une application $DF: \Omega \to \mathbb{C}$.

II.F.2) Pour tout entier $k \ge 2$, démontrer l'existence de l'application $D^k F = D(D^{k-1}F) : \Omega \to \mathbb{C}$. On convient que $D^1F = DF$.

II.G -

II.G.1) Pour tout réel t > 0, développer en série entière de u la fonction $u \in \mathbb{C} \mapsto t^{-u}$. Préciser le rayon de convergence.

II.G.2) Établir qu'au voisinage de 0,
$$F(z) = \sum_{k=0}^{\infty} c_k z^k$$
 où $c_k = \frac{1}{k!} \int_0^1 (-\ln t)^k p(t) dt$. (1)

II.G.3) Quel est le rayon de convergence R de la série entière (1) ?

II.H -

- II.H.1) Déterminer un équivalent de c_k quand $k \to \infty$.
- II.H.2) Quelle est la nature de la série (1) quand |z| = R?

Partie III - Développements en série

III.A -

III.A.1) Développer en série entière de $t \in \mathbb{R}$ la fonction

 $t \mapsto \frac{\ln(1-t)}{t}$. Préciser le rayon de convergence.

III.A.2) Pour tout entier $n \ge 0$ et tout $z \in \Omega$, calculer

$$u_n(z) = \int_0^1 t^{n-z} \ln t \, \mathrm{d}t.$$

III.A.3) Démontrer que $F(z) = \sum_{n=1}^{\infty} \frac{1}{n(n-z)^2}$.

III.B -

. .

III.B.1) Pour tout $x \in I$, exprimer

$$\phi(x) = \int_{-\infty}^{x} F(u) \, \mathrm{d}u$$

sous forme d'une série ne faisant plus intervenir d'intégrale. Préciser $\phi(0)$.

III.B.2) Déterminer un équivalent de $\phi(x)$ quand $x \in I$ tend vers 1.

III.C -

III.C.1) Si $y \in \mathbb{R}$, on pose H(y) = F(iy). Les fonctions |H| et $|H|^2$ sont-elles intégrables sur \mathbb{R} ? Préciser la valeur de

la valeur de
$$\int_{-\infty}^{\infty} H(y) \, dy.$$

III.C.2) Pour quelles valeurs des réels α et β , la somme

$$S(\alpha, \beta) = \sum_{m,n \ge 1} (mn)^{-\alpha} (m+n)^{-\beta}$$
 est-elle finie?

III.C.3) Si

$$K_{m,n} = \int_{-\infty}^{\infty} (y + im)^{-2} (y - in)^{-2} dy,$$

où m et n sont des entiers $\geqslant 1$, calculer $K_{m,n}$. En déduire la valeur de

$$\frac{1}{4\pi} \int_{-\infty}^{\infty} |H(y)|^2 \ \mathrm{d}y \text{ sous la forme } S(\alpha, \beta).$$

III.D -

- III.D.1) Démontrer que la série de fonctions obtenue en III.A.3 converge sur un domaine $\tilde{\Omega}$ de \mathbb{C} que l'on précisera. On note encore F le prolongement de F à $\tilde{\Omega}$. Prouver que F est de classe C^{∞} sur $\tilde{\Omega}$.
- III.D.2) Soient p un réel, n_0 un entier > 0, z et z' deux complexes dont les parties réelles sont majorées par n_0 . Pour tout entier $n > n_0$, majorer $|(z'-n)^{-p} (z-n)^{-p}|$ en fonction de n, n_0 , p et |z'-z|.
- III.D.3) Avec les notations de II.F.1 et II.F.2, pour tout entier $k \ge 1$ et tout $z \in \tilde{\Omega}$, établir l'existence de $D^k F(z)$ qu'on exprimera sous forme de somme d'une série.

III.E -

III.E.1) Pour tout entier $k \ge 0$, évaluer c_k , défini en II.G.2, sous forme de somme d'une série numérique.

III.E.2) Retrouver, à l'aide du III.E.1, le résultat obtenu en II.H.1.