DS n°8 Plus dur

Concours blanc Février 2020 (durée 2 heures)

Toute calculatrice interdite

Rappel: Un résultat non justifié, même juste, ne rapporte aucun point.

Étude d'un endomorphisme d'un espace de fonctions numériques

Soit I un intervalle de la forme [-a,a] où a est un réel strictement positif. Dans tout le problème, on considère les ensembles suivants.

- $\mathscr E$ le $\mathbb C$ -espace vectoriel constitué des applications de I dans $\mathbb C$ de classe $\mathscr C^\infty$.
- $\bullet\,\mathcal{D}$ la partie de \mathcal{E} constitué de ses éléments développables en séries entière sur un voisinage de 0.
- \mathscr{P} la partie de \mathscr{E} constitués de ses éléments polynômiaux

Pour tout $n \in \mathbb{N}$, on note

$$W_n = \int_0^{\pi/2} (\sin t)^n dt$$

et si $f \in \mathcal{E}$, on note u(f) et v(f) les applications de I dans \mathbb{C} définies par les formules :

$$(\forall x \in I) \begin{cases} u(f)(x) = \frac{2}{\pi} \int_0^{\pi/2} f(x \sin t) dt \\ v(f)(x) = f(0) + x \int_0^{\pi/2} f'(x \sin t) dt \end{cases}$$

Les candidats devront justifier leurs affirmations

A. Préliminaires

- 1) Justifier que \mathscr{P} et \mathscr{D} sont des sous espaces vectoriels de \mathscr{E} .
- **2)** Montrer que si $f \in \mathcal{E}$, u(f) et v(f) sont bien définies et appartient à \mathcal{E} et que l'on définit ainsi des endomorphismes u et v de \mathcal{E} .
- 3) Montrer que \mathcal{P} est stable par u et par v.
- **4)** Établir pour tout $n \in \mathbb{N}$ une relation simple entre W_{n+2} et W_n . En déduire que pour tout $n \in \mathbb{N}$,

$$W_n W_{n+1} = \frac{\pi}{2(n+1)}$$

5) Montrer que la suite $(W_n)_{n\in\mathbb{N}}$ est strictement décroissante. Déterminer sa limite et donner un équivalent de cette suite.

B. Étude de la continuité de u et de v

On considère une norme M de $\mathscr E$ définie pour tout $f \in \mathscr E$ par la formule

$$M(f) = \max_{x \in I} |f(x)|$$

- **6)** Vérifier que M est bien définie et montrer que u est une application continue de l'espace vectoriel normé (\mathscr{E}, M) dans lui même.
 - On admet que l'application v n'est pas continue de (\mathcal{E}, M) dans lui même, mais que v est continue de (\mathcal{E}, N) dans (\mathcal{E}, M) .
 - Donc les normes M et N ne sont pas équivalentes.
- 9) Si $f \in \mathcal{E}$ et si $\varepsilon > 0$,montrer qu'il existe $P \in \mathcal{P}$ tel que f(0) = P(0) et $|f'(x) P'(x)| \le \varepsilon$, pour tout $x \in I$. En déduire que \mathcal{P} est dense dans l'espace vectoriel normé (\mathcal{E}, N) .

C. Étude de l'inversibilité de u et v

- **10)** Déterminer les restrictions de $u \circ v$ et $v \circ u$ à \mathscr{P} .
- 11) Déterminer $(u \circ v)(f)$ pour tout $f \in \mathcal{E}$. Le réel 0 est-il valeur propre de l'endomorphisme v.
- 12) Déterminer également $(v \circ u)(f)$ pour tout $f \in \mathcal{E}$. Conclure.

D. Étude des valeurs et vecteurs propres de u et v

- 15) Montrer que λ est une valeur propre de v si et seulement si $\frac{1}{\lambda}$ est une valeur propre de u. Qu'en est-il des vecteurs propres correspondants?
- **16)** Montrer que \mathcal{D} est stable par u. L'est-il par v? On considère une valeur propre λ de u, de vecteur propre associé $f \in \mathcal{E}$.
- 17) vérifier que si $n \in \mathbb{N}$, le nombre $m_n = \max_{x \in I} |f^{(n)}(t)|$ est bien défini, et établir que pour tout $x \in I$,

$$|\lambda||f^{(n)}(x)| \le \frac{2m_n W_n}{\pi}$$

En déduire que $f \in \mathcal{P}$.

18) Déterminer les valeurs propres et les vecteurs propres de u et de v.