à rendre mercredi 9 Octobre 2019

PROBLÈME: UTILISATIONS DES MATRICES COMPAGNON

Notations et définitions :

Dans tout le problème K désigne \mathbb{R} ou \mathbb{C} et n est un entier naturel supérieur ou égal à 2.

Si u est un endomorphisme d'un K-espace vectoriel E, on note $u^0 = id_E$ et $\forall n \in \mathbb{N}, u^{n+1} = u^n \circ u$.

On note $K_n[X]$ la K-algèbre des polynômes de degré inférieur ou égal à n, $\mathcal{M}_n(K)$ la K-algèbre des matrices carrées de taille n à coefficients dans K de matrice unité I_n et $GL_n(K)$ le groupe des matrices inversibles de $\mathcal{M}_n(K)$; les éléments de $\mathcal{M}_n(K)$ sont notés $M=(m_{i,j})$.

Pour une matrice A de $\mathcal{M}_n(K)$, on note ${}^t\!A$ la transposée de la matrice A, $\operatorname{rg}(A)$ son rang, $\chi_A = \det(A - XI_n)$ son polynôme caractéristique et $\mathrm{Sp}\left(A\right)$ l'ensemble de ses valeurs propres.

Si $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ est un polynôme unitaire de $K_n[X]$ on lui associe

la **matrice compagnon**
$$C_P = \begin{pmatrix} 0 & 0 & . & . & 0 & -a_0 \\ 1 & 0 & . & . & 0 & -a_1 \\ 0 & 1 & 0 & . & 0 & -a_2 \\ . & . & . & . & . & . \\ 0 & . & 0 & 1 & 0 & -a_{n-2} \\ 0 & . & . & 0 & 1 & -a_{n-1} \end{pmatrix} \in \mathcal{M}_n(K)$$
(c'est-à-dire la matrice $C_P = (c_{i,j})$ est définie par $c_{i,j} = 1$ pour $i - j = 1, \ c_{i,n} = -a_{i-1}$ et $a_{i,n} = -a_{i-1}$

cas).

Les parties II. III. et IV. utilisent les résultats de la partie I. et sont indépendantes entre elles.

I. Propriétés générales

Dans cette partie on considère le polynôme $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ de $K_n[X]$ et C_P sa matrice compagnon associée.

- 1. Montrer que C_P est inversible si et seulement si $a_0 \neq 0$ et déterminer χ_{C_P}
- 2. On note tC_P la transposée de la matrice C_P .
 - (a) Soit λ élément de Sp (tC_P), déterminer le sous-espace propre de tC_P associé à λ .
 - (b) On suppose que P admet n racines $\lambda_1, \lambda_2, \ldots, \lambda_n$ deux à deux distinctes, montrer que tC_P est diagonalisable

On suppose que
$$P$$
 admet n racines $\lambda_1, \lambda_2, \ldots, \lambda_n$ deux à deux distinctes, montrer que C_P es et en déduire que le déterminant de Vandermonde
$$\begin{vmatrix} 1 & 1 & . & . & 1 \\ \lambda_1 & \lambda_2 & . & . & \lambda_n \\ \lambda_1^2 & \lambda_2^2 & . & . & \lambda_n^2 \\ . & . & . & . & . \\ \lambda_1^{n-1} & \lambda_2^{n-1} & . & . & \lambda_n^{n-1} \end{vmatrix}$$
 est non nul.

- 3. Exemples:
 - (a) Déterminer une matrice A (dont on précisera la taille n) vérifiant : $A^{2019}=A^{2018}+A^{2017}+2016I_n. \label{eq:A2019}$

$$A^{2019} = A^{2018} + A^{2017} + 2016I$$

(b) Soit E un K-espace vectoriel de dimension n et f un endomorphisme de E vérifiant : $f^{n-1} \neq 0$ et $f^n = 0$; montrer que l'on peut trouver une base de E dans laquelle la matrice de f est une matrice compagnon que l'on déterminera.

II. Localisation des racines d'un polynôme

Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$, on pose pour tout entier $1 \leq i \leq n$:

$$r_i = \sum_{j=1}^n |a_{i,j}|$$
 et $D_i = \{z \in \mathbb{C}, |z| \leqslant r_i\}$ ensemble appelé disque fermé de centre 0 et de rayon r_i .

$$r_i = \sum_{j=1}^n |a_{i,j}| \text{ et } D_i = \{z \in \mathbb{C}, |z| \leqslant r_i\} \text{ ensemble appelé disque fermé de centre 0 et de rayon } r_i.$$

$$\text{Pour } X = \begin{pmatrix} x_1 \\ x_2 \\ \cdot \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{C}), \text{ on note } \|X\|_{\infty} = \max_{1 \leqslant i \leqslant n} |x_i|.$$

6. Soit
$$\lambda \in \mathrm{Sp}\,(A)$$
 et $X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$ un vecteur propre associé à λ .

Montrer que pour tout entier $1 \le i \le n$: $|\lambda x_i| \le r_i ||X||_{-1}$

- 7. Démontrer que $\operatorname{Sp}(A) \subset \bigcup_{i=1}^{n} D_k$.
- 8. Soit $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ un polynôme de $\mathbb{C}[X]$, établir que toutes les racines de P sont dans le disque fermé de centre 0 et de rayon $R = \max\{|a_0|, 1 + |a_1|, 1 + |a_2|, \ldots, 1 + |a_{n-1}|\}$.
- 9. Application : Soit a, b, c et d quatre entiers naturels distincts et non nuls, montrer que l'équation d'inconnue n: $n^a + n^b = n^c + n^d$

n'admet pas de solution sur $\mathbb{N} \setminus \{0, 1\}$.

III. Suites récurrentes linéaires

On note $E = \mathbb{C}^{\mathbb{N}}$ l'espace vectoriel des suites de complexes et si u est une suite de E, on écrira u(n) à la place de u_n pour désigner l'image de n par u.

On considère le polynôme $P = X^p + a_{p-1}X^{p-1} + \ldots + a_0$ de $\mathbb{C}[X]$ avec $a_0 \neq 0$ et on lui associe le sous-espace vectoriel F de E formé des éléments u vérifiant la relation :

$$\forall n \in \mathbb{N} : u(n+p) = -a_{p-1}u(n+p-1) - \dots - a_0u(n).$$

- 10. Montrer que si λ est racine de P alors la suite $n \mapsto \lambda^n$ est élément de F.
- 11. Soit φ l'application de F vers \mathbb{C}^p définie par : $u \mapsto (u(0), u(1), \dots, u(p-1))$, montrer que φ est un isomorphisme d'espaces vectoriels. Quelle est la dimension de F?
- 12. Pour tout entier $0 \le i \le p-1$ on définit les élements e_i de F par : $e_i(i)=1$ et, lorsque $0 \le j \le p-1$ et $j\ne i,\ e_i(j)=0$.
 - (a) Déterminer $e_i(p)$ pour $0 \le i \le p-1$.
 - (b) Montrer que le système de vecteurs $(e_0, e_1, ..., e_{p-1})$ est une base de F.
 - (c) Soit u un élément de F, établir que $u = \sum_{i=0}^{p-1} u(i)e_i$.
- 13. Si u est un élément de E, on définit l'élément f(u) de E par : $f(u): n \mapsto u(n+1)$. Montrer que l'application f ainsi définie est un endomorphisme de E et que F est stable par f.
- 14. Si g est l'endomorphisme de F induit par f, montrer que la matrice de g dans la base $(e_0, e_1, \ldots, e_{p-1})$ est tC_P .
- 15. On suppose que P admet p racines non nulles et deux à deux distinctes : $\lambda_0, \lambda_1, \ldots, \lambda_{p-1}$.
 - (a) Déterminer une base de F formée de vecteurs propres de g.
 - (b) En déduire que, si u est élément de F, il existe des constantes complexes $k_0, k_1, \ldots, k_{p-1}$ telles que : $\forall n \in \mathbb{N}, u(n) = k_0 \lambda_0^n + k_1 \lambda_1^n + \ldots + k_{p-1} \lambda_{p-1}^n$.
- 16. Exemple: (On revient à la notation usuelle u_n)

Soit a, b et c trois réels distincts.

Déterminer une base de l'espace vectoriel des suites définies par u_0 , u_1 et u_2 et par la relation de récurrence valable pour tout $n \in \mathbb{N}$:

$$u_{n+3} = (a+b+c)u_{n+2} - (ab+ac+bc)u_{n+1} + abcu_n$$
.

IV. Facultatif: une démonstration de Cayley-Hamilton

Dans cette partie, E est un \mathbb{K} -espace vectoriel de dimension $n \geqslant 1$ et u est un endomorphisme de E. Soit $\mathcal{B} = (e_1, e_2, ..., e_n)$ une base de E.

Le but étant de démontrer le théorème de Cayley-Hamilton, nous ne pourrons bien évidemment pas l'utiliser dans les questions suivantes.

On notera M_u le **polynôme minimal** de u.

- 17. Pour $x \in E$, on définit $L_x = \{P \in \mathbb{K}[X], [P(u)](x) = 0\}$. Montrer que $\forall x \in E, \exists ! P_x \in \mathbb{K}[X]$, unitaire non nul de degré minimum appartenant à L_x . Montrer que deg $P_x \leq n$.
- 18. Montrer que M_u est le plus petit commun multiple des polynômes $P_{e_1}, P_{e_2}, ..., P_{e_n}$.
- 19. Soit n_1 le degré de P_{e_1} . Montrer que la famille $\mathcal{F} = (e_1, u(e_1), ..., u^{n_1-1}(e_1))$ est libre, et que $n_1 = \dim \operatorname{Vect}(u^k(e_1); k \in \mathbb{N})$.
- 20. Montrer que $P_{e_1} \mid \chi_u$ où χ_u est le polynôme caractéristique de u. En déduire que $M_u \mid \chi_u$, et que $\chi_u \in \{P \in \mathbb{K}[X]/P(u) = 0\}$ Comment s'énonce le résultat ainsi (re)trouvé ?